Kurz vor Weihnachten bestellt, und jetzt ist er seit ein paar Tagen da. Mein neuer 3D Drucker!
Diesmal ein Prusa MK3S, welcher meinen alten 3D Drucker nun endlich in Rente schickt (Flashforge Finder).
Da ich sofort drucken wollte habe ich die zusammengebaute Variante bestellt (Asche auf mein Haupt) und nur der automatische Filamentwechsler (MMU2S) ist als Bausatz gekommen.

Jetzt soll das hier aber kein 3D Drucker test werden. Davon gibt es schon mehr als genug und ich kann diese einfach nur bestätigen: Druck starten -> wiederkommen -> perfekt 😉

Jetzt sollte mein neuer Drucker aber auch ein neues zu Hause bekommen und nicht einfach nur auf der Werkbank stehen. Gerade der Filamentwechsler soll wohl eine Menge Platz brauchen (noch nicht zusammen gebaut). Und wenn ich ABS oder ASA Drucke, muss ich da auch noch eine Kiste drum rum bauen können und die Abluft irgendwie nach draußen bekommen.

Darum habe ich mich für ein Regal auf Rollen entschieden.

Regal auf Rollen mit 3D Drucker und Filamentrollen
Regal auf Rollen mit 3D Drucker und Filamentrollen

Beim Regal habe ich für einen s.g. Kommissionierregal bzw. einen Kommisionierwagen entschieden. Das hat wirklich ordentliche Rollen und verträgt eine Menge Gewicht. Die Böden kann man nach Bedarf platzieren. Ich habe einen weg gelassen, da ich für den Drucker ein höheres Fach haben wollte.

Von unten nach oben ist meine Aufteilung jetzt so: Lager und Ersatzteile, Mülleimer und Werkzeug, Drucker und Rollen in Benutzung, Filamentlager.

Zunächst mal habe ich den Drucker mit Filament-Guides ausgestattet. Diese habe ich bei Thingiverse gefunden. Sie werden einfach oben an die Metallstrebe geklemmt und sorgen dafür, dass das Filament immer “von oben” kommt.

Filament Guide für Prusa MK3S
Filament Guide für Prusa MK3S

Dann hatte ich noch eine alte PTZ Webcam herum liegen. Diese habe ich mit Kabelbindern links am Regal befestigt, damit ich den Druck beobachten kann ohne im Raum sein zu müssen.

Kamera und 3D Drucker
Kamera und 3D Drucker

Obwohl, oder vielleicht gerade weil, der Prusa MK3S wirklich solide und robust aufgebaut ist, vibriert das ganze Holzbrett beim verfahren der Y-Achse. Darum habe ich eine Teppichfliese untergelegt, welche die Vibrationen deutlich dämpft.

Für die Halterung der Spulen habe ich mir auch etwas ausgedacht. Diese habe ich auf der rechten Seite mit einer Gewindestange montiert. Da ich viel mit den 3KG Spulen arbeite, war mir eine M8 Stange zu dünn. Daber bin ich auf M12 gegangen.

Zunächste habe ich übliche Stuhlwinkel am Regal festgeschraubt. Auf diese Winkel habe ich dann eine kleine Aufnahme für die Gewindestange geschraubt. Hier gibt es die STL-Datei der Aufnahme.

Stuhlwinkeln und Aufnahme der M12 Gewindestange
Stuhlwinkeln und Aufnahme der M12 Gewindestange
Aufnahme M12 Gewindestange
Aufnahme der M12 Gewindestange

Dann liefen die Rollen auf der Gewindestange schon ganz gut, aber noch wirklich “leicht”. Daher habe ich ebenfalls wieder bei Thingiverse universelle Spulenhalterungen heruntergeladen. Da ich aber M12 Stangen verwende, musste ich natürlich die Abmessungen anpassen. Hier gibt es meine STL-Dateien des Universal Rollenhalters für M12 Stangen. Ich habe 3 Varianten gemacht, kurz, mittel und lang. Für die 3KG Rollen nehme ich die großen, für alle anderen den mittleren.

Universal Rollenhalter mittel
Universal Rollenhalter mittel
Universal Rollenhalter lang
Universal Rollenhalter lang
Universal Rollenhalter nuss
Universal Rollenhalter Nuss

In die Halterung kommen dann je zwei Kugellager (6001-2RS). Ich habe die Abmessungen der Halterungen so gewählt, das mit die Kugellager mit etwas Kraft hineindrücken muss und sie dann vom Kunststoff eingeklemmt werden. Das Ergebniss sind dann zwei Stangen, je 50cm, auf denen jeweils bis zu 4 oder 5 Rollen Platz haben. Durch die Kugellager wird das Filament sehr leicht abgerollt.

Kugellager für M12 Gewindestangen
Kugellager für M12 Gewindestangen
Rollenhalter ohne Rolle auf Achse
Rollenhalter ohne Rolle auf Achse
Filamentrollen im Regal
Filamentrollen im Regal

Wie schon angekündigt hat mein letzter Raspberry mit meiner Zigbee-Steuerung seine SD-Karte zerlegt – was ja immer ein Damoklesschwert über dem Kopf eines jeden ist, der die kleinen PCs mit SD-Karte betreibt und dort auch Datenbanken o.ä. drauf laufen lässt.

Da die PIs ab Version 3 aber auch endlich (ordentlich) aus dem Netzwerk booten können, habe ich mich entschieden nach und nach allen PIs die SD-Karte weg zu nehmen und nur noch über das Netzwerk zu arbeiten. Hier ist die kleine Anleitung dazu:

Verwendet wurden:
– QNAP NAS
– Raspberry PI 3 B V1.2

Vorbereitung DHCP Server

  • Damit der PI aus dem Netzwerk booten kann habe ich meinen DHCP Server so konfiguriert, das er immer die gleiche IP vergibt
  • Außerdem habe ich noch folgende DHCP Optionen gesetzt:
  • “Vendor encapsulated options” = Raspberry Pi Boot
  • “TFTP Servername” = 192.168.x.y (das ist die IP vom NAS)
  • “Bootfile Name” = bootcode.bin

Vorbereitung Raspberry Pi

  • Wie üblich mit dem Raspberry Pi Imager eine (neue) SD-Karte beschrieben und das Betriebssystem “Raspberry Pi OS Lite” installiert (ohne grafische Oberfläche)
  • Dann das System hochgefahren und die grundlegende Installation abgeschlossen (raspi-config, usw.)
  • Damit der Pi über das Netzwerk booten kann, muss ein Eintrag in der /boot/config.txt geändert werden (ganz am Ende)
nano /boot/config.txt
program_usb_boot_mode=1
  • Anschließend den PI neu starten und die Zeile wieder entfernen. Die Einstellung bleibt dauerhaft erhalten.
  • Der Erfolg kann nach dem Neustart wie folgt überprüft werden
vcgencmd otp_dump | grep 17
Ergebniss: 17:3020000a

Einrichtung QNAP NAS

  • Als erstes habe ich die Freigabe “Public” per NFS freigegeben. Hier soll später das Root-Dateisystem liegen und auch die Dateien für den Bootvorgang werde ich hier ablegen. Dazu muss der NFS-Dienst ggf. vorher in der Systemsteuerung aktiviert werden.
  • Gastzugang per Samba/Windows wird für “Public” deaktiviert, bzw. auf “kein Zugriff” gestellt
  • Auf der Public-Freigabe erstellle ich einen Ordner “pxeboot”
  • In dem Ordner “pxeboot” erstelle ich dann pro Raspberry einen weiteren Unterordner. Hier z.b. “zigbee”
  • Und in dem Ordner “zigbee” erzeuge ich dann noch einen Ordner “boot”
  • Außerdem brauche ich für den Netzwerkboot noch einen TFTP Server, der auf den QNAP-NAS wie folgt konfiguriert wird
  • Nun starte ich den Pi einmal ohne die SD-Karte neu und schaue in die Log-Datei “Public\pxeroot\opentftpd.log”. Dort steht jetzt drin welche Dateien gefunden/nicht gefunden wurden. Bei der Datei “start.elf” ist auch ein Unterordner zu sehen, der die Seriennummer des PIs darstellt. Diese merke ich mir, denn ich muss im nächsten Schritt einen passenden Symlink anlegen
  • Darum melde ich mich auf der Console des NAS per SSH an und mittels “ln -s /share/Public/pxeroot/zigbee/boot /share/Public/pxeroot/<seriennummer>” erzeuge ich einen Symlink mit der passenden Seriennummer, der in das boot-Verzeichniss des entsprechenden PIs zeigt

Kopieren der Daten

  • Zunächst melde ich mich am Pi an und mounte die NFS-Freigabe. Anschließend kopiere die gesamte Root-Partition auf die NFS-Freigabe
sudo mount.nfs 192.168.X.Y:/Public/pxeroot/zigbee /mnt
sudo rsync -xa --exclude /mnt / /mnt/
  • Nachdem der Kopiervorgang abgeschlossen ist (kann etwas dauern) müssen noch ein paar Dateien angepasst werden.
  • Zunächst “nano /mnt/etc/fstab”. Es wird alles entfernt außer “proc” und die vier tmpfs sowie das NFS-Root werden hinzugefügt
proc /proc proc defaults 0 0
192.168.X.Y:/Public/pxeroot/zigbee	/ 	nfs 	defaults 	0 	0
tmpfs /tmp tmpfs defaults,noatime,nosuid,size=100m 0 0
tmpfs /var/tmp tmpfs defaults,noatime,nosuid,size=30m 0 0
tmpfs /var/log tmpfs defaults,noatime,nosuid,mode=0755,size=100m 0 0
tmpfs /var/run tmpfs defaults,noatime,nosuid,mode=0755,size=2m 0 0
  • Dann fahre ich den Pi herunter und lege die SD-Karte in meinen PC ein (da wo ich diese auch beschrieben habe). Ich kopiere den ganzen Inhalt, also die ganzen .elf-Dateien, config.txt usw. in den Boot-Ordner auf der Netzwerkfreigabe
  • Die Datei “bootcode.bin” jedoch kopiere ich direkt in den Ordner “pxeroot”
  • Dann wird noch die “cmdline.txt” im Boot-Ordner angepasst:
dwc_otg.lpm_enable=0 console=serial0,115200 console=tty1 root=/dev/nfs nfsroot=192.168.X.Y:/Public/pxeroot/zigbee rw vers=3 ip=dhcp rootfstype=nfs smsc95xx.turbo_mode=N elevator=deadline rootwait

Neustart des Raspberry Pi

Jetzt müsste der Pi ohne SD-Karte neu gestartet werden können. Er wird nach ca. 5 Sekunden vom Netzwerk booten und das System wird bis auf eine Fehlermeldung bzgl. der SWAP-Datei ganz normal hoch fahren.

Dann sind noch folgende, abschließende Arbeiten zu tun:

  • Deinstallieren von “dphys-swapfile” und erstellen und einbinden einer manuell erzeugten SWAP-Datei
sudo apt-get remove --purge dphys-swapfile
sudo rm /var/swap
sudo update-rc.d dphys-swapfile remove
 
sudo dd if=/dev/zero of=/var/swap bs=1M count=1024
sudo losetup /dev/loop0 /var/swap
sudo mkswap /dev/loop0
sudo swapon /dev/loop0

vi /etc/rc.local
echo "Swap einbinden"
sleep 3
losetup /dev/loop0 /var/swap
mkswap /dev/loop0
swapon /dev/loop0
  • Außerdem mache ich noch ein bischen Tuning
vi /etc/default/rcS
ASYNCMOUNTNFS=no 

vi /etc/sysctl.conf
vm.min_free_kbytes=12288
  • Dann noch ein abschließender Neustart und die Konfiguration ist abgeschlossen.

Fluch und Segen zugleich bei mir: Ich mache immer mehrere Projekte parallel auf. So auch dieses hier. Denn ich wollte immer schon mal einen Lasercutter haben und als ich dann in einer Zeitschrift vom diesem “China-Kracher” gehört habe, habe ich mir nun auch einen solchen zugelegt.

Wichtig: Das hier ist keine Kaufempfehlung für das Gerät. Es ist meinem Empfinden nach nicht wirklich sicher und sieht an einigen Stellen aus wie “mal schnell zusammen geklöppelt”.

Aktuell bin ich dabei ein paar Modifikationen vorzunehmen. Und von diesen möchte ich hier berichten.

K40 Lasercutter
K40 Lasercutter, frisch aus der Packung

Der Laser hat auf den ersten Blick folgende Dinge, die ich verbessern, bzw. optimieren werde:

Meine geplanten Optimierungen

  1. Viele kleine Detailverbesserungen an der Verkabelung, Erdung und Kühlung
  2. Keinen Deckelschalter. D.h. der Laser feuert weiter, wenn der Deckel geöffnet wird
  3. Abenteuerliche Wasserkühlung. Die Wasserpumpe die in einen Eimer soll, mit lose rum hängenden Schlauchenden ist nicht wirklich vertrauenserweckend
  4. Das Druckbett lässt nur kleine Bauteile zu, die fummelig eingespannt werden sollen

Kleinigkeiten:

Zunächst habe ich mal die wesentlichen Dinge überprüft. Z.B. “Ist das Gehäuse geerdet”. Es ist zwar eine Erdungsschraube hinten rechts vorgesehen, aber wurde diese montiert nachdem das Gehäuse lackiert wurde. Sie hat also keinen Kontakt zum Gehäuse. Das habe ich mit etwas Schmiergelpapier nachgeholt und dann einmal alle Masseanschlüsse durchgemessen (0 Ohm!)

Hochspannungsnetzteil
Hochspannungsnetzteil ohne Folie

Dann viel mir auf, das auf meinen Netzteil noch eine blaue Folie klebte. Ich kann mir vorstellen das diese die Wärmeabfuhr des Hochspannungsnetzteils nicht verbessert und habe Sie einfach abgezogen.

Wo ich gerade am Netzteil zugange war viel mir auf, das trotz Aderendhülsen ein paar feine Litze aus den Hülsen heraus ragten. Diese habe ich neu gecrimpt bzw. einfach abgeschnitten.

Deckelschalter

Damit man nicht “im Trott” während des Laserns einfach den Deckel aufmacht und die Finger oder noch schlimmer die Augen in Kontakt mit dem (unsichtbaren !) Laserstrahl kommen, soll sich dieser automatisch abstellen, wenn man den Deckel öffnet. Dazu habe ich einen Microschalter in den Deckel eingebaut und diesen in Reihe mit dem vorhandenen “Laser An”-Schalter geschaltet.

Die rosafarbenen Kabel sind original. Ich habe eines davon durchtrennt und meinen Schalter einfach dazwischen geschaltet. Somit müssen beide Schalter geschlossen sein, damit der Laser feuert.

Deckelschalter im Deckel
Deckelschalter im Deckel
Schalter Durchgeschleift
Schalter Durchgeschleift

Wasserkühlung

Als nächstes steht die Wassserkühlung an. Ich nutze dazu Komponenten für PC Wasserkühlungen und werde einen geschlossenen Wasserkreislauf mit Ausgleichsbehälter und aktiver Kühlung bauen. Die Teile sind schon angekommen, aber ich hatte noch keine Gelegenheit diese zu verbauen. Zumal ich auch noch Halterungen für den Ausgleichsbehälter und natürlich den Kühler entwerfen muss.

Druckbett

Auch für das Druckbett habe ich bisher nur eine Übergangslösung. Die mit ausgelieferte Aluminiumplatte war nicht nur krumm, sondern diese hat natürlich auch das Potential den auftreffenden Laserstrahl wieder nach oben zu reflektieren.

Ich habe diese also erstmal mit einem Gitter (möglichst nicht verbogen) aus dem Baumarkt ersetzt. Der Vorteil dabei: Dadurch das ich das Gitter auf die Schrauben liege bin ich mit der Oberkannte des Gitters nun wieder genau im Fokus des Lasers.

Neues, temporäres Druckbett
Neues, temporäres Druckbett
Neues Druckbett Detail
Neues Druckbett Detail